Fractional dynamics of systems with long-range space interaction and temporal memory
نویسندگان
چکیده
Field equations with time and coordinate derivatives of noninteger order are derived from a stationary action principle for the cases of power-law memory function and long-range interaction in systems. The method is applied to obtain a fractional generalization of the Ginzburg–Landau and nonlinear Schrödinger equations. As another example, dynamical equations for particle chains with power-law interaction and memory are considered in the continuous limit. The obtained fractional equations can be applied to complex media with/without random parameters or processes. r 2007 Elsevier B.V. All rights reserved.
منابع مشابه
Review of Some Promising Fractional Physical Models
Fractional dynamics is a field of study in physics and mechanics investigating the behavior of objects and systems that are characterized by power-law nonlocality, power-law long-term memory or fractal properties by using integrations and differentiation of noninteger orders, i.e., by methods in the fractional calculus. This paper is a review of physical models that look very promising for futu...
متن کاملConservation laws and Hamilton’s equations for systems with long-range interaction and memory
Using the fact that extremum of variation of generalized action can lead to the fractional dynamics in the case of systems with long-range interaction and long-term memory function, we consider two different applications of the action principle: generalized Noether’s theorem and Hamiltonian type equations. In the first case, we derive conservation laws in the form of continuity equations that c...
متن کاملSystem of fuzzy fractional differential equations in generalized metric space
In this paper, we study the existence of integral solutions of fuzzy fractional differential systems with nonlocal conditions under Caputo generalized Hukuhara derivatives. These models are considered in the framework of completegeneralized metric spaces in the sense of Perov. The novel feature of our approach is the combination of the convergentmatrix technique with Schauder fixed point princi...
متن کاملNonlinear Fractional Dynamics on a Lattice with Long Range Interactions
A unified approach has been developed to study nonlinear dynamics of a 1D lattice of particles with long-range power-law interaction. A classical case is treated in the framework of the generalization of the well-known Frenkel-Kontorova chain model for the non-nearest interactions. Quantum dynamics is considered following Davydov’s approach for molecular excitons. In the continuum limit the pro...
متن کاملNonlinear Fractional Dynamics of Lattice with Long-Range Interaction
A unified approach has been developed to study nonlinear dynamics of a 1D lattice of particles with long-range power-law interaction. Classical case is treated in the framework of the well-known FrenkelKontorova chain model. Qunatum dynamics is considered follow to Davydov’s approach to molecular excitons. In the continuum limit the problem is reduced to dynamical equations with fractional deri...
متن کامل